Gamal (Gliricidia Sepium): Tanaman Pakan Alternatif Kaya Protein Untuk Ternak Ruminansia

Authors

  • Rezki Amalyadi Universitas Mataram

DOI:

https://doi.org/10.58300/jps.v4i2.1405

Keywords:

Gliricidia sepium, high-quality forage, sustainable feed, vegetable protein, ruminants

Abstract

Gliricidia sepium, commonly known as Gamal, is a fast-growing leguminous tree with high potential as a forage resource for ruminant livestock, particularly during the dry season when feed shortages are common. This species offers several agronomic advantages, including adaptability to various climates, high biomass yield, and the ability to improve soil fertility through nitrogen fixation. Nutritionally, Gamal leaves are rich in crude protein, have balanced fiber content, and contain relatively low levels of anti-nutritional factors, making them suitable as a protein supplement. Utilization of Gamal in ruminant diets has been shown to enhance feed intake, animal growth, and feed conversion efficiency. This review highlights the botanical characteristics, nutritional composition, benefits, challenges, and future prospects of integrating Gliricidia sepium into sustainable tropical ruminant feeding systems.

Downloads

Download data is not yet available.

References

Abdulrazak, S. A., Kahindi, R. K., & Muinga, R. W. (2006). Effects of Madras thorn, Leucaena and Gliricidia supplementation on feed intake, digestibility and growth of goats fed Panicum hay. Livestock Research for Rural Development, 18(9).

Alamu, E. O., Adesokan, M., Fawole, S., Maziya-Dixon, B., Mehreteab, T., & Chikoye, D. (2023). Gliricidia sepium (Jacq.) walp applications for enhancing soil fertility and crop nutritional qualities: a review. Forests, 14(3), 635.

Arief, P., Welan, R., & Jamarun, N. (2023). Milk evaluation and nutrient digestibility of Etawa crossbreed dairy goats fed Mirasolia diversifolia, Gliricidia sepium, Indigofera zoolingeriana, and palm concentrate. Int J Vet Sci., 13, 311–318.

Baumont, R., Decruyenaere, V., Maxin, G., Rouille, B., Heuze, V., & Tran, G. (2023). Valorising a diversity of biomasses to meet the technical, environmental and societal challenges of ruminant farming.

Bencherchali, M., Houmani, Z., & Houmani, M. (2019). Chemical composition and food value for ruminants of Fraxinus oxyphylla Bieb.

Capstaff, N. M., & Miller, A. J. (2018). Improving the yield and nutritional quality of forage crops. Frontiers in Plant Science, 9, 535.

Chaudhry, A. S. (2008). Forage based animal production systems and sustainability, an invited keynote. Revista Brasileira de Zootecnia, 37, 78–84.

Edvan, R. L., Carneiro, M. S. de S., Magalhães, J. A., Albuquerque, D. R., de M Silva, M. S., Bezerra, L. R., Oliveira, R. L., & Santos, E. M. (2014). The forage yield of Gliricidia sepium during the rainy and dry seasons following pruning management in Brazil. Ciencia e Investigación Agraria: Revista Latinoamericana de Ciencias de La Agricultura, 41(3), 309–316.

Edwards, A., Mlambo, V., Lallo, C. H. O., Garcia, G. W., & Diptee, M. D. (2012). In vitro ruminal fermentation parameters of tanner grass (Brachiaria arrecta) supplemented with leaves from three forage trees. Livestock Research for Rural Development, 24(6).

Edwards, A., Mlambo, V., Mnisi, C. M., & Hughes, M. P. (2024). Mature fruits of Gliricidia sepium and Leucaena leucocephala plants have potential as inexpensive protein and mineral supplements for ruminants. Agroforestry Systems, 98(8), 2951–2960.

Foroughbakhch, P. R., Parra, A. C., Estrada, A. R., Vazquez, M. A. A., & Avila, M. L. C. (2012). Nutrient content and in vitro dry matter digestibility of Gliricidia sepium (Jacq.) Walp. and Leucaena leucocephala (Lam. De Wit.).

Hani, E. S., Ridjal, J. A., Ibanah, I., Utami, R. A., Yulianto, R., & Widuri, L. I. (2024). Level of farmer motivation in actualizing downstream greening of ruminant livestock feeds with gamal supplement. AIP Conference Proceedings, 3176(1), 30043.

Hidayat, Z. (2021). Response of young Bali bulls given Gliricidia and Cassava leaves in rations as a substitute for grass in Bangka Belitung. E3S Web of Conferences, 306, 5009.

Kaba, J. S., & Abunyewa, A. A. (2021). New aboveground biomass and nitrogen yield in different ages of gliricidia (Gliricidia sepium Jacq.) trees under different pruning intensities in moist semi-deciduous forest zone of Ghana. Agroforestry Systems, 95(5), 835–842.

Lallo, C. H. O., Smalling, S., Facey, A., & Hughes, M. (2017). The impact of climate change on small ruminant performance in Caribbean communities. In Environmental Sustainability and Climate Change Adaptation Strategies (pp. 296–321). IGI Global Scientific Publishing.

Marin, A. M. P., Menezes, R. S. C., Silva, E. D., & Sampaio, E. V. de S. B. (2006). Effects of Gliricidia sepium on soil nutrients, microclimate and maize yield in an agroforestry system in semi-arid Paraiba, Brazil. Revista Brasileira de Ciência Do Solo, 30, 555–564.

Mathis, C. P., & Sawyer, J. E. (2007). Nutritional management of grazing beef cows. Veterinary Clinics of North America: Food Animal Practice, 23(1), 1–19.

Mbugua, D. M., Kiruiro, E. M., & Pell, A. N. (2008). In vitro fermentation of intact and fractionated tropical herbaceous and tree legumes containing tannins and alkaloids. Animal Feed Science and Technology, 146(1–2), 1–20.

Medjekal, S., Ghadbane, M., Benderradji, L., BODAS, R., Bousseboua, H., & Lopez, S. (2017). Effect of polyethylene glycol on in vitro gas production of three leguminous shrubs in Algerian arid areas. Euro-Mediterranean Conference for Environmental Integration, 1213–1215.

Mng’omba, S. A., & Akinnifesi, F. K. (2025). Gliricidia sepium tree pollarding and immediate plant growth regulator application to stem cuttings improved seed yield and field performance at Chitedze and Chitala research stations in Malawi. Agroforestry Systems, 99(5), 88.

Moinuddin, G. (2018). GLIRICIDIA (QUICKSTICK). In Forage Crops of the World, Volume II: Minor Forage Crops (pp. 279–286). Apple Academic Press.

Mulyana, B., Soeprijadi, D., & Purwanto, R. H. (2020). Development of bioenergy plantation in Indonesia: Yield regulation and above-ground carbon storage in Gliricidia (Gliricidia sepium) plantation. E3S Web of Conferences, 202, 8009.

Munadi, L. O. M., Purwanti, B., Sasmita, F., Haloho, R. D., Telupere, F. M. S., Mekiuw, Y., Rizal, M., Adrianus, A., Rosmalah, S., & Kasmin, M. O. (2024). Optimizing the utilization of plantation waste for carrying capacity of beef cattle feed in Southeast Sulawesi, Indonesia. In Technological Innovations in Tropical Livestock Development for Environmental Sustainability and Food Security (pp. 163–170). CRC Press.

Parthiban, K. T., Revathi, S., Vishnu, M. V, & Packialakshmi, M. (2022). Nutritional profiling of multipurpose tree species for fodder quality. Range Management and Agroforestry, 43(1), 139–145.

Pazla, R., & Sriagtula, R. (2021). Evaluation of potential and local forages nutrition as ruminant feed-in Payo Agro-Tourism Area, Solok City, West Sumatera, Indonesia. IOP Conference Series: Earth and Environmental Science, 888(1), 12055.

Prima, F. H., & Hartono, A. (2018). Biomass and carbon stock potential of Gliricidia sepium as an alternative energy at Timor Tengah Utara Regency, East Nusa Tenggara Province, Indonesia. IOP Conference Series: Earth and Environmental Science, 141(1), 12022.

Shem, M. N., Machibula, B. P., Sarwatt, S. V, & Fujihara, T. (2003). Gliricidia sepium as an alternative protein supplement to cottonseed cake for smallholder dairy cows fed on Napier grass in Tanzania. Agroforestry Systems, 58(1), 65–72.

Sileshi, G. W., Akinnifesi, F. K., Mafongoya, P. L., Kuntashula, E., & Ajayi, O. C. (2020). Potential of Gliricidia-based agroforestry systems for resource-limited agroecosystems. In Agroforestry for Degraded Landscapes: Recent Advances and Emerging Challenges-Vol. 1 (pp. 255–282). Springer.

Solangi, A. H., Mal, B., Kazmi, A. R., & Iqbal, M. Z. (2010). Preliminary studies on the major characteristic, agronomic feature and nutrient value of Gliricidia sepium in coconut plantations of Pakistan. Pak. J. Bot, 42(2), 825–832.

Widiawati, Y., Teleni, E., & Suharyono, S. (2014). Glucose metabolism in sheep fed grass supplemented with Gliricidia sepium. Atom Indonesia, 40(3), 121–127.

Widiawati, Y., Winugroho, M., & Teleni, E. (2018). Amino Acids Metabolism in the Muscle of Sheep fed with Mitchell Grass Hay Supplemented with Gliricidia sepium. Atom Indonesia, 44(2), 75–80.

Zain, M., Putri, E. M., Rusmana, W. S. N., Erpomen, E., & Makmur, M. (2020). Effects of supplementing Gliricidia sepium on ration based ammoniated rice straw in ruminant feed to decrease methane gas production and to improve nutrient digestibility (in-vitro). Int. J. Adv. Sci. Eng. Inf. Technol, 10(2), 724–729.

Published

2025-10-05